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East Asian traditional medicine, “Song Shan Ling Chih” or G. tsugae has known in the properties of 
marvelous herbs and excellent mushroom [1,2]. It has found to be active in several other therapeutic effects, 
including anti-bacteria, anti-parasite, blood pressure regulation, immunomodulation, kidney toning, liver 
protection, nerve toning, sexual potentiating, etc. The most metabolite product, polysaccharide is the 
biological activities as immunomodulatory and anti-tumor which it harvest from cultivation of biomass [3-5].   

Currently, there have been a lot of efforts on cultivating the fungus in solid media for fruiting body 
production. However, the method takes long time and has high risk of contamination due to open cultivation 
and medium ingredients from nature [6,7]. Thus, submerged fermentation to produce a fungus have been 
received a lot of attention because of short time cultivation, high productivity, fewer chances of contamination, 
and easy recovery of producing metabolites [5, 8]. 

The alternative strategy to control and solve the problems in fermentation process by mathematical model 
is very interested from bio-industry therefore; the kinetic models of yields were studied. The objective of 
fermentation kinetic study is to manage the production and operate the fermentation process of G. tsugae. 
Many research used the cube-root and Luedeking-Piret equations to create the kinetic model. The cube-root 
equation is mostly explained the microbial growth of pellet [9]. Whereas, Luedeking-Piret equation is widely 
used to indicate a relationship of cell growth and synthesized product such as to predict the gluconic acid 
production by Aspergillus miger[10], to control the lipase production by Rhizopus arrhizus [11], to study the 
kinetic of pleuromutilin production by Pleurotus mutilis [12]. Therefore, it is possible to study the 
mathematical relationship of biomass and EPS for G. tsugae form the kinetic models of cube-root and 
Luedeking-Piret equations.  

2. Materials and methods   

2.1. Inoculums preparation and submerged culture  

The stain, G. tsugue BCRC 36203, was used in this study. It was maintained on potato dextrose agar 
(PDA). The medium was prepared using 200 g/L of unpeel sliced potato to boil in distilled water for 30 min 
and addition of 20 g/L glucose .The stain was first incubated on a PDA at 30 oC for 7 day in a Pertri dish as a 
stock and then transferred to a 500 mL Erlenmeyer flask with the same medium without agar by punching a 1 
cm2 square agar disc with a sterilized cutter. The flasks, containing 200 mL of liquid medium, were rotated at 
135 rpm, at 30 oC for 7 day. After that a blender was used to crush the pellet for seed inoculums in submerge 
fermentation .The crushed pellet 10 mL was transferred to the optimum condition of cultivation. It consists 30 
g/l of maltose , 14 g/l of skim milk, 1.5 g/l of KH2PO4 and K2HPO4, 1 g/l of MgSO4·7H2O, 0.6 g/l of CaCO3, 
0.02 g/l of vitamins B5 and B6 , 1.5 ml/l of olive oil, 1.2 ml/l of ethanol, pH 7 and 135 rpm of shaking speed. 

2.2. Estimation of mycelia growth and EPS  

The cultivated mycelia were separated by centrifugation at 15,000×g for 20 min. The supernatant and the 
precipitate were used to determine the amounts of EPS produced and the mycelium formed, respectively. The 
precipitate was dried to measure the amount of mycelium formed. All experiments were performed in 
triplicate. The supernatant from culture both was mixed with four times its volume of 95% ethanol, stirred 
vigorously and left overnight at 4°C. The precipitated EPS was recovered by centrifugation at 4,000×g for 20 
min. The crude polysaccharide was dried for 1 day to remove the residual ethanol. The concentration of EPS 
was obtained by phenol–sulfuric acid method which predict by spectrophotometer at 490 nm. 
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2.3. Growth kinetics equation of G. tsugae 

The kinetics model of G. tsugae under optimal condition were studied by biomass of pellet in flasks (500 
ml) incubated. Multiple flasks were run at the same time, and flasks were taken every 12 hr of fermentation 
time. Pelleted cultures were traditionally assumed to follow cube-root kinetics. / /      (1) 

Where M is the biomass (g/l), kc is a constant ((g/l)1/3·h)), and t is a fermentation time (h). 
Luedeking-Piret [13] was applied to use for the EPS curve. This equation was widely used in metabolite 

predictions. 

   (2) 

Where P is the EPS (g/l), α(g/g) and β (g/(g·h)) are constants.The model was empirical in nature,  
represents the EPS production in proportion with the growth rate and  regradless of growth. 
 

3. Result and discussions 

The progression of kinetic model consists of comparing assumed models with experimental data in order to 
develop more explanatory equations. Kinetic models enable the bioengineers to predict and control the 
behavior of microbial processes which could be developed using the cube-root kinetics and Luedeking-Piret 
equations [9-14]. 
 

 

Fig. 1. The experimental data and regression model of (a) biomass and (b) EPS under the optimal condition of Ganoderma tsugae  

The biomass and EPS production at optimal condition during submerged fermentation were indicated in 
figures 1a and 1b. The lag phase of mycelia growth was prolonged around 2 days at a constant pH 6.78. The 
exponential phase was observed until after 2 days of culture, during this phase the biomass rapidly increased, 
whereas pH decreased. Under optimal conditions, the exponential phase had the duration of 3.5 days (48-132 
hrs), the stationary phase appeared after 132 hr, and later period the pellets lacked the oxygen mass transfer 
and nutritional supply which directly affect with a low growth rate. 

The model was fitted using experimental data obtained from the lag phase and exponential phase. The 
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cube-root kinetic equation (Eq. 1) was used to simulate the growth of biomass whereas Luedueking-Piret 
equation (Eq. 2) was used to simulate the EPS yield. The cube-root kinetic equation (Eq. 1) was rearranged 
obtaining Eq. 3.  /   3 / 3 /       (3) 

The Luedeking-Piret equation (Eq.2) was integrated with the cube-root kinetic equation (Eq.1) obtaining 
the following equation:  3 6 / 3 /  3 6 / 3 / 3 / 3 /  3 / 3 /  14 / 32 /  

Therefore, the kinetic equation which described the relationship between the EPS and biomass could be 
writed: 14 / 3 / 32 / 3 /                                                                                                                                                 4  

Table 1. The values of kinetic coefficients of G. tsugae for submerged fermentation in flask 

Kinetic parameters Kinetic values 

1. Initial biomass M0 (g/l) 0.132 

1. Constant 1 kC ((g/l)1/3/h) 0.015102 

2. Initial EPS P0 (g/l) 0.014524 

3. Constant 2 α (g/g) 0.051857 

4. Constant 3 β (g/(g×h)) -0.00065 

 
From Eq.3 and Eq.4, the kinetic values of initial biomass (M0) and initial EPS (P0) were obtained from the 

experimental data while the constants of kC, α and β were determined from algorithm to solve the minimum 
error between the experimental data and calculated model which presented in Table 1. The kinetic models of 
biomass and EPS were well described by the model because they obtained the high R-square more than 0.95 
(0.9605 and 0.9916, respectively). Therefore, the kinetic variables achievable obtained due to a reasonable 
estimation according to experimental data. The kinetic model could be used to control a submerged 
fermentation process of G. tsugae to determine the biomass and EPS which useful way for microbiologist and 
fermentation industry to predict the both productions. 

4. Conclusion 

The mathematical relationship of biomass and EPS from G. tsugae is very interesting for bio-industry to 
control and predict a fermentation process. The kinetic models are created form the experimental data at lag 
phase and exponential phase by algorithm solving. The result in this study found that the cube-root equation is 
a good kinetic model to explain the effect of biomass versus fermentation time whereas Luedeking-Piret 
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equation appropriately describes the mathematical relationship between biomass and EPS. Therefore; the 
models presented in this work are a perfect prediction and can advanced control on fermentation process of 
biomass and EPS from G. tsugae.   
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